New Impeller Type for Mixing Efficiency Improvement and Energy Saving

2013 AIChE - North America Mixing Forum November 4th, 2013 Revolmixing www.revolmixing.com

- 1. Challenges of Mixing
- 2. Mixing Mechanism
 - Of Existing impellers
 - Expected
- 3. New Impeller Performance
- 4. Applications

1. Challenges of Mixing

- Improper mixing
 - Insufficient mixing:
 - Slow reaction
 - Low productivity
 - Larger reactor
 - High local concentration kill/inhibit cells
 - Unwanted byproduct
 - Over mixing
 - High shear-Share sensitivity/cell carrier
 - Flocculation
 - Price : Billion dollars annually.

1. Challenges of Mixing

- Mixing Efficiency
- Energy Efficiency
- Scale-up
- Specific Requirements
 - Multi stage chemical reactions with different mixing requirements.

2. Mixing Mechanism-Existing Impellers

Impellers

- Marine propeller
- Pitched blade
- Turbine (Ruston)
- Submersible mixer
- Amendments of above.
 - Short or long, wide or narrow, bend
 - At corner, or cut a corner, etc.
 - Create large flume of flow
 - Good mixing Rely on baffle to create turbulence

2. Mixing Mechanism-Existing Impellers

Flow Pattern

- Push liquid downwards/Upwards/ around
- Create Vortex
- Baffles are needed
- Distribute large circulation loop/ flume of liquid

Baffles

- Increase flow friction/resistance to create turbulence
- Energy dissipator

2. Mixing Mechanism-Existing Impellers

Current Research areas:

- 1. Pumping more liquid
- 2. Create more turbulence or smaller drops/eddies

Turbulence:

- Flow velocity fluctuation
- Bulk mixing
- Still studying and not well-understood
- Difficult to predict/model
- Too many variables:
 - » Reactor geometric
 - » Impeller type/position/speed
 - » Power input
 - » Liquid Viscosity
 - » Baffle
 - » Each application may need develop a model
 - » Cause of difficulties to scale up/down

- Mixing—reduce non-uniformities
- Bulk motion-small eddies-dispersion-molecular diffusion
 - Distribution-Bulk circulation
 - · Limited effect on mixing

Dispersion—New generation mixing

- Break bulk flow to smaller eddies.
- (Physical Chemistry:) to cause (particles) to separate uniformly throughout a solid, liquid, or gas.
- (chemistry:) mixture in which fine particles of one substance are scattered throughout another substance.
- Apply energy directly to dispersion

Diffusion

- Reaction requires molecular contact-ultimate goal
- Molecular level (Brownie Motion) temperature related
- Improve dispersion will improve diffusion

- 2. Mixing Mechanism-Expected
 - Good/Ideal/preferred Mixing

- Good/Ideal/preferred Mixing
 - Circulation loop

-Center location

 Bottom location for high flow under impeller. Such as for solids suspension.

Performance Tests

Tank size: 22 inch diameter,

Water Depth: 33 inch

Volume: 60 Gallon (220 Liter)

Impeller: 7.5 inch,

speed: 120—150 rmp

Impeller location: 10 inch above bottom (center)

3. Performance of New Impeller

3. Performance of New Impeller

- Various impeller positions possible
- What's the flow under the impeller?
- Much lower impeller speed (30 rpm) also works.
- Dished or coned bottom desired

3. Performance of New Impeller

Observations:

- 1. Solids are fully suspended—not pushing to bottom edge
- 2. On-bottom Motion speed is the complete off-bottom (just) suspension speed, even Total Uniformity speed (Power Ratio: 1:2-5; or 1:4-25-Oldshue (1983).
- 3. Satisfactory uniformity
- 4. Combined radial flow, axial flow, centralized circulation with strong dispersion at the center.
- 5. Minimum vortex—desired for circulation loop
- 6. Little turbulence, mostly laminar flow
- 7. Minimized stagnant area
- No short circuit

4. Applications

- 1. Fast mixing—polymer dilution/coagulation
- 2. Complete solids suspension
- 3. Easy modeling
- 4. Precise scale up/down
- **5. Little surface disturbance**—Oxygen sensitive reactions
- 6. Little shear force—flocculation/biomass/biocarrier
- 7. Convenient impeller location—Top/bottom/middle/eccentric
- 8. Convenient Inlet/outlet—top/bottom/middle
- **9.** Various mixing strength required—Change mixing speed to suit reaction requirement.
- 10. No baffle
- 11. Saving cash and payback
 - Smaller Reactor
 - Purer products
 - Energy

4. Applications

• Trend:

The reactor be shaped for optimized flow pattern:
 egg shaped fomenters

REVOLMIXING High Performance Dispersing Impellers

- Thank you!
- Any questions?